

CALL FOR ABSTRACT 10TH NSCA GLOBAL CONFERENCE

The 10th NSCA Global Conference officially opens the Call for Abstracts, inviting researchers, professionals, students, and specialists in the field who wish to share their scientific work, research projects, or practical experiences in the areas of strength and conditioning, physiotherapy, performance, and sports rehabilitation.

The goal is to promote scientific and professional dialogue, highlighting original contributions that reflect the central theme of the event: the integration between **Strength & Conditioning and Physiotherapy** to optimize performance, prevent injuries, and support effective recovery pathways.

Selection Procedures

ABSTRACT SUBMISSION

Authors are invited to submit an original abstract (maximum 2,000 characters) in English, prepared according to the following format:

- Title: Brief (fewer than 15 words) and written in Title Case.
- Authors: The first and last names of all authors should be included in the author block.
- Do not include academic titles (e.g., PhD, MD), as these may interfere with online search functions.

Structure:

- Introduction / Background
- Methods
- Expected or Obtained Results
- Conclusions and Practical Implications

Each table, figure, or diagram counts as 300 characters toward the total character limit.

Do not use brand names within the abstract.

Please indicate any funding sources (grants) and acknowledgments related to artificial intelligence usage during the submission process.

SCIENTIFIC REVIEW

All submitted abstracts will be evaluated by the NSCA GC Italy Scientific Committee.

The evaluation criteria will include:

- Relevance and originality of the content
- Methodological rigor
- Practical applicability within the sports or clinical context
- Scientific quality and clarity of presentation

ACCEPTANCE NOTIFICATION

Selected authors will receive an official email and will be invited to present their work as a poster or oral communication during the conference.

ABSTRACT EXAMPLES

BRAKING FORCE-TIME CHARACTERISTICS BETWEEN TRADITIONAL SQUATS AND FLYWHEEL INERTIA SQUATS AT DIFFERENT LOADS

PURPOSE: The purpose of this study was to examine the differences in braking force-time characteristics between traditional back squats and flywheel inertia squats performed using a spectrum of loads. METHODS: 17 resistance-trained subjects took part in this research study including 9 men (age=24.7±4.0 years, height=171.7±5.8 cm, body mass=77.9±11.2 kg, relative one repetition maximum [1RM] back squat=2.01±0.26 kg/kg) and 8 women (age=23.0±2.1 years, height=167.6±8.6 cm, body mass=71.5±7.7 kg, relative 1RM back squat=1.43±0.25 kg/kg). Each subject participated in three total sessions over the course of one week. During the first testing session, each subject completed a 1RM back squat and were familiarized with flywheel inertia squats. During the subsequent two testing sessions, the subjects performed three repetitions each of the free weight back squat exercise with 40, 50, 60, 70, and 80% of their 1RM back squat or flywheel squats using inertial loads of 0.010, 0.025, 0.050, 0.075 and 0.100 kgm2. The traditional and flywheel squat session order was randomized. All squat repetitions were performed on dual force plates sampling at 1000 Hz. Raw force-time data were collected and exported for analysis within a customized spreadsheet. Braking mean force, duration, and impulse were compared using a series of 2 (condition) x 5 (load) repeated measures ANOVA. In addition, Hedge's g effect sizes were calculated between conditions to examine the magnitude of the differences at each load. RESULTS: The descriptive data for each load and mode are displayed in Table 1. There was a significant interaction between mode x load for eccentric mean force (p< 0.001), and duration (p=0.008) but not for braking impulse (p=0.513). In addition, there was a significant load main effect for braking impulse (p< 0.001) but not for mode (p=0.140). Large-very large effects favoured traditional squats for braking mean force (g =1.66-2.70). The differences in braking duration between conditions were small-moderate (q=0.25-1.00). Finally, the effect sizes between conditions for eccentric impulse were trivial-moderate (g=0.12-0.76).

CONCLUSIONS: Significantly greater braking mean forces were produced during traditional squats compared to flywheel squats. In contrast, braking durations were significantly greater during flywheel squats compared to traditional. There were no significant differences between squat conditions for braking impulse; however, moderate effect sizes favouring the traditional condition were present at the lightest loads.

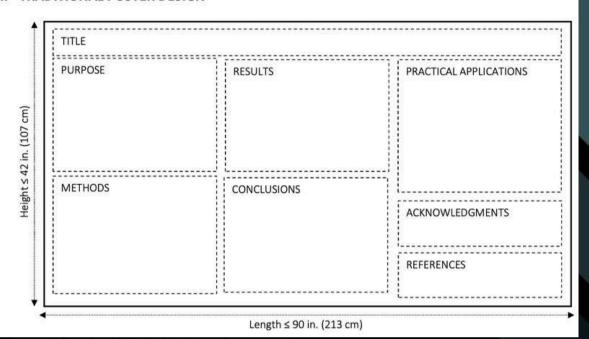
PRACTICAL APPLICATION: The desired training adaptation may influence the decision to use one training mode over another. Traditional squats may be more beneficial for braking rapid force production as greater force may be produced over shorter durations. However, flywheel training may provide a novel braking stimulus to individuals who almost exclusively use traditional exercises within their training programs.

ACKNOWLEDGEMENTS: none

Table 1: Eccentric mean force, eccentric duration, and eccentric impulse for traditional and flywheel inertia squats.

	Traditio	nal	
Load (%1RM)	Eccentric Mean Force (N/kg)	Duration (s)	Impulse (Ns)
40	$21.5 \pm 3.0*$	0.42 ± 0.11	651.8 ± 136.4
50	$22.7 \pm 3.4*$	0.49 ± 0.13	$808.2 \pm 186.3 $ †
60	$24.4 \pm 3.5*$	0.49 ± 0.12	$889.3 \pm 220.7 $ †
70	25.4 ± 3.6 *	0.55 ± 0.11	1044.1 ± 269.5
80	$26.7 \pm 3.8*$	0.61 ± 0.13	1230.9 ± 308.5
2000	Flywhe	el	***************************************
Inertia (kgm²)	Eccentric Mean Force (N/kg)	Duration (s)	Impulse (Ns)
0.010	16.4 ± 2.0	$0.48 \pm 0.14 $ #	563.1 ± 127.3
0.025	18.0 ± 1.9	0.52 ± 0.11	$685.0 \pm 125.3 \dagger$
0.050	18.0 ± 2.1	$0.64 \pm 0.21 $ #	$857.4 \pm 278.3 \dagger$
0.075	17.9 ± 2.2	$0.76 \pm 0.27 $ #	$999.9 \pm 348.0 \dagger$
0.100	18.0 ± 2.3	$0.83 \pm 0.30 $ #	1106.1 ± 381.7

^{* =} significantly greater than flywheel corresponding load (p < 0.001); # = significantly greater than traditional corresponding load (p < 0.05); \dagger = significantly greater than all the preceding lighter loads (p < 0.05)



GUIDELINES FOR POSTER ABSTRACT PRESENTATION

- All poster presentations must be printed on a single, uniform sheet with dimensions not exceeding 42 × 90 inches (107 × 229 centimeters) (height × width).
- Unless otherwise specified, the poster display boards will measure 48 × 96 inches (122 × 244 cm).
- Poster abstract presentations must be consistent with the content of the accepted abstract and include the following sections: Purpose, Methods, Results, Conclusions, and Practical Applications.
- Poster presenters are required to stand next to their poster for the entire duration of the assigned presentation time.
- The Research Committee recommends one of the following two layout options as a general guideline for all poster presentations: Traditional Poster or #BetterPoster

EXAMPLE OF A TRADITIONAL POSTER

I. TRADITIONAL POSTER DESIGN

2025 Undergraduate Student Poster Presentation Winner

April Krywe - Creighton University

Creighton

THE IMPACT OF HIIT ON MUSCLE FUNCTION AND SERCAI IN OLDER ADULTS: A PILOT STUDY

April Krywe¹, Rashelle Hoffman², Eric Bredahl¹, Blake Murphy¹, Joan Eckerson¹, Mitchel Magrini¹ Department of Exercise Science and Pre-Health Professions, Creighton University ²Department of Physical Therapy, Creighton University

College of Arts and Sciences

preservation are poorly understood.

High-intensity interval training (HIIT) can help maintain muscle mass, strength, and independence in older adults; however, the underlying molecular mechanisms that explain this

The purpose of this study is to examine changes in SERCA 1 expression, vastus lateralis cross-sectional area (VL_{CSA}) , lower body strength, and estimated cardiorespiratory fitness (eVO₂) following 12-weeks of HiIT

 Table 1. Participant Demographics

 n (MF) Age (y) Height (m)
 Weight (kg)

 Participants 4 (1/3)
 80 ± 8
 1.69 ± 0.03
 64.08 ± 10.06

The HIIT protocol is described in Table 2. Panoramic ultrasound images of the right VL were collected at baseline (PRE) and following training (POST) to estimate VL_{CSA}. Micro biopsies from the right VL were obtained to examine changes in SERCA 1 expression at rest (1 week ± 1 day POST) using Western Blots. GAPDH was used as loading control. Each sample was run in duplicate to ensure reliability. Muscular strength was assessed by estimating one-repetition maximum (e1RM) using a belt squat. Starting weights were determined using a percentage of the participant's body weight (males=120%, females=100%) and were gradually increased until they were unable to perform 3-5 reps. eVO₂ was calculated based on 6-minute walk test performance using validated gender-specific equations. Differences (p < 0.05) between PRE and POST for each variable were identified using paired t-tests and Hedges g was used to determine effect sizes.

There was a significant increase in SERCA 1 expression from PRE to POST (29,564.06 \pm 19,267.31 au vs. 49,136.57 \pm 2,2995.21 au, p = 0.007, g = -2.06), as well as significant improvements in squate 1RM (75.96 \pm 18.28 kg vs. 123.58 \pm 30.34 kg, p = 0.036, g = -2.50) and eVO2 (27.40 \pm 4.93 mL/kg/min, 34.20 \pm 2.89 mL/kg/min, p = 0.047, g = -1.18). There were no significant improvements in VL_{CDA} (9.96 \pm 2.38 cm² vs. 10.53 \pm 2.95 cm², p = 0.201, g = -0.59).

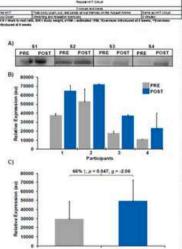
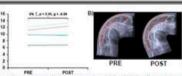



Figure 1. SERCA1 expression A) Individual relative SERCA1 expression PVDF membranes B) Individual relative SERCA1 expression from PRE to PDST HIIT craining C) Average relative SERCA1 expression from PRE to PDST HIIT.

pes from PRE to POST HIIT A) Include ounds B) Example size changes from ski 13.338 cm²

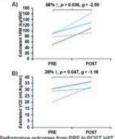


Figure 3, Performance outcomes from PRE to POST HIIT A) Estimated 1RM from PRE to POST HIIT B) Estimated VO₂ max from PRE to POST

Conclusions

These data suggest that the 12-weeks of HIIT increased cardiorespiratory fitness, muscle size, and strength in older adults which may be explained, in part, by an improvement in

Practical Applications

This study contributes to the growing body of literature citing HIIT training as an effective exercise modality to potentially ameliorate age-associated declines in lower body strength and conditioning professionals and practitioners can use this data to prescribe exercise for older adult inferior.

EXAMPLE OF A #BETTERPOSTER DESIGN

TITLE **PURPOSE** Main finding goes here, **METHODS** Extra tables and leight ≤ 42 in. (107 cm) translated into plain figures RESULTS English. Emphasize the ______ CONCLUSIONS important words. -------------PRACTICAL APPLICATIONS **ACKNOWLEDGMENTS** ------REFERENCES

Length \leq 90 in. (213 cm)

Influence of Relative Load on Fatigue During One Set of Forearm Flexion Muscle Actions to Failure at Maximal Intended Velocity

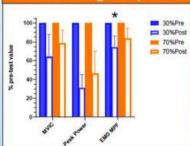
Tyler J. Neltner¹, Robert W. Smith³, Jocelyn E. Arnett², Dolores G. Ortega², Jack W. Sullivan¹, Brandon N. Jesse¹, John J. Bartaszewicz¹, Terry J. Housh², Richard J. Schmidt²

¹University of Wisconsin-Platteville; ²University of Nebraska-Lincoln; ³Wayne State College

INTRODUCTION

Velocity-based training has recently gained interest as an alternative to traditional resistance training that emphasizes the relative load lifted, while performing the repetition at a slower self-selected velocity. The purpose of the present study was to examine the effects of relative load during one set of forearm flexion muscle actions to failure performed at maximal intended velocity (MIV) on performance (maximum voluntary isometric contraction (MVIC), peak force (PF), peak velocity (PV), and seak power (PP)) and neuromuscular responses.

METHODOLOGY


On separate days, 14 men (mean±SD: age=22.9±2.0 yrs; body nass=85.0±16.9 kg; height=178.7±5.9 cm) completed one set of orearm flexion muscle actions to failure at 30% and 70% of their one-repetition maximum (1RM), in a random order. Prior to the fatiguing task the subjects completed pre-testing which consisted of two repetitions of dynamic forearm flexion muscle actions at the load equivalent to the fatiguing task and two actions at the load equivalent to the language gass, and two
maximum voluntary isometric contractions, performed in a
random order. Following the fatiguing task the subjects were retested (post-testing) in the same manner of pre-testing. All
muscle actions were performed unilaterally, on a preacher curl
setup with their nondominant arm. The concentric phase of each repetition was completed at MIV (as quickly as possible). Electromyographic (EMG) signals were recorded from the biceps brachii during testing, and the amplitude (AMP) and mean power frequency (MPF) values were normalized to the values from the pre-test MVIC with the highest force output. For all performance (MVIC, peak force, peak velocity, and peak power) and neuromuscular (EMG AMP and MPF) parameters, a fatigue index was calculated as the percent decline from pre-test to post-test. Paired samples t-tests were used to examine differences in the number of repetitions completed at each load, as well as in the fatigue index for all performance parameters

Despite the **low load** inducing a greater magnitude of metabolic stress, the decreases in MVIC, peak velocity, and peak power were not influenced by the relative load used for the max velocity forearm flexion muscle actions.

PRACTICAL APPLICATION

The results of this study offer strength and conditioning practitioners with valuable insights into the effects of relative load during fatiguing muscle ctions performed at MIV. For instance, training with lower relative loads at MIV will induce a greater metabolic stress, without negatively effecting overnent velocity or PP production, compared to when train oderate relative loads.

RESULTS

The subjects completed a significantly (p=0.001, d=3.0) greater number of repetitions to failure at 30% IRM (64.9±17.4) compared to 70% IRM (16.7±5.1). Peak force decreased more significantly (p=0.001, d=1.3) following the 30% (32.0±16.8%) versus 70% IRM task (7.6±9.9%). In addition, there was a significantly (p=0.004, d=0.9) greater decrease in EMG MPF for the 30% (25.6±11.7%) compared to the 70% 1RM task (16.3±11.0%). There were, however, no significant (p=0.05) differences between the 30% and 70% tasks for the fatigue index for MVIC, PV, PP, or EMG AMP.

CONCLUSION

The results of the study indicated that, although the subjects v able to sustain repetitions to failure for longer at 30% 1RM compared to 70% 1RM, there were no load-specific effects of fatigue on decreases in MVIC, PV, or PP. In addition, there were no differences in changes in muscle excitation (EMG AMP) from pre-test to post-test. However, the 30% 1RM task induced a greater decrease in motor unit action potential conduction red to the 70% 1RM task, as evidenced by the decrease in EMG MPF.

CONFERENCE REGISTRATION

The acceptance of the abstract is subject to the purchase of a registration ticket for the 10th NSCA Global Conference.

Registration is mandatory for at least one of the authors and grants access to all scheduled scientific, practical, and networking sessions.

HOW AND WHERE TO SUBMIT

Your submission must be sent to the following email address: riccardo.battioli@nsca.it
Please include the following in the

email subject line:
"Name-Surname + Abstract
Submission NSCA Global Conference
2026"

Deadlines and Useful Information

ABSTRACT
SUBMISSION DEADLINE

JUNE 31, 2026

NOTIFICATION OF RESULTS

JULY 31, 2026

Presenting your work at the 10th NSCA Global Conference represents a unique opportunity to actively contribute to the international scientific dialogue, share professional experiences, and build connections with colleagues and researchers from around the world.

The best abstract will be honored with the "Young Investigator Award."

The winner will be recognized during the Saturday evening dinner.